详细内容 当前:首页 > 新闻中心
详细介绍振动时效的发展历史
时间:2014-9-13    发布:振动时效

随着世界范围的工业化进程,能源短缺日趋严重,我们赖以生存的空间环境正受到十分严重的威协,在过去的几年中,温室效应多次出现并至今其影响尚在,生态环境逐年恶化,警钟长鸣!因此无论是西方发达国家和发展中国家,纷纷对能源消耗大、污染严重的行业实行了严格控制,甚至由政府出面直接干预。同时世界各大企业为提高市场竞争力、降低生产成本、节约能源、减少污染和树立良好的企业形象,纷纷改进传统工艺、加大技术含量和采用高技术设备,使得整个世界工业化大生产正处于一个日新月异高速发展的阶段。

时效加工是机械制造业的基础工艺,最早投入实际运用的是自然时效,而后是热时效,振动时效工艺是在六十年代出现的新时效工艺技术,通过近三十年的探索和开发不断完善,由于其环保、节能和加工便利,因此是现代的朝阳工业。

热时效(TSR)工艺是目前还在广泛采用的传统机械加工方法,其原理是用炉窑将金属结构件加热到一定温度,保温后控制降温,达到消除残余应力的目的,可以保证加工精度和防止裂纹产生。TSR工艺广泛应用于几乎所有机械产品生产厂,在中国有几万家企业每年有数十万吨的机械金属结构件采用TSR,其所消耗的重油、电、煤气和原煤折合标准煤为140-240kg/吨左右,由此可见TSR工艺耗能已不容忽视,其对环境造成的污染之大也是有目共瞩的。TSR工艺的基本工装低温时效炉目前造价约为人民币4000元/立方米左右,年维护费用为人民币300-400元/立方米,加上运输、其它辅助工作(如去除氧化皮等),每吨金属结构件的处理费用将高达人民币400-600元。

自然时效(NSR)是将工件长时间露天放置(一般长达六个月至一年左右),利用环境温度的季节性变化和时间效应使残余应力释放,由于周期太长和占地面积大,仅适应长期单一品种的批量生产和效果不理想,目前应用的较少。

振动时效(VSR)工艺是一种可完全取代TSR和NSR的工艺,其原理是用振动消除残余应力,可达到TSR工艺的同样效果,并在许多性能指标上超过TSR。VSR工艺耗能少(是TSR的2%左右)、设备投资少和效率高,其在节能、减少环境污染和提高产品性能方面有卓越的表现,使得这一高新技术在各行各业中有广泛的应用前景。

VSR工艺在我国的应用已有二十多年的历史,但其较具规模的应用却不到十年,影响其广泛应用的原因主要是设备制造技术的相对落后。在二十世纪九十年代以前,我国生产的振动时效设备普遍存在技术陈旧、故障率高、操作复杂和体积笨重等缺点,使用设备的企业往往对其又爱又怕,爱的是其带来的可观利益,怕的是其娇嫩易坏,有统计表明该时期设备带病率几乎为100%,其维护复杂也使相当多的技术人员谈虎变色。进入九十年代,一种全新概念的新型设备“TZ21智能型振动时效装置”在深圳出现,在短短的一年左右就普及大江南北,使一些“行业专家”大跌眼镜,其独创的全软件控制、模板组合硬件结构、编程全自动操作等新技术,使故障率大幅度降低、操作相对简化和体积、重量减少,其可观的销售业绩已说明其在中国市场上的成功。“RSR系列、RSR2000系列、RSR3000系列全自动消除应力专家系统”更是青出于蓝而胜于蓝。这些先进设备的出现,使振动时效工艺的普及有了良好的基础。

VSR(Vibration Stress Relief)这个术语表示一个使金属结构件尺寸稳定的物理过程,这个过程的结果是解决加工过程中和加工后的变形,它是利用受控共振对工件进行处理,在工业技术高度发达的今天已使这个过程得以实现。

金属结构件在铸造焊接锻压和机械切削加工过程中,由于热胀冷缩和机械力造成的变形,在工件内部产生残余应力,致使工件处于不稳定状态,降低工件的尺寸稳定性和机械物理性能,使工件在成品后使用过程中因残余应力的释放而产生变形和失效。为消除残余应力,传统的工艺方法是采用自然时效和热时效,热时效(TSR)前面有介绍,自然时效是将工件长时间露天放置(一般长达六个月至一年左右),利用环境温度的不断变化和时间效应使残余应力释放,由于周期太长和占地面积大,不适应批量生产和效果不理想,目前应用的很少。

振动时效(VSR)对降低或匀化金属结构件的残余应力,提高抗动载变形能力,稳定尺寸精度和防止裂纹有非常好的效果:

⑴降低工件内残余应力(峰值)30%-80%,与传统的热时效(TSR)相当,工件无氧化脱碳现象,无需清理氧化皮,减少了辅助工时。

⑵与TSR相比提高了工件抗载荷变形能力,VSR工艺的应用使工件抗静载变形能力提高30%以上,抗动载变形能力提高1-3倍多。

⑶是目前超大型结构件和多种材料组合的结构件唯一时效方法,VSR还适用于二次时效(一般在半精加工后),是唯一不受场地、环境、工序和工件形状限制的处理方法。

振动时效(VSR)消除残余应力使工件获得尺寸稳定性的机理可以从宏观和微观两方面解释:

宏观上,当σ动 +σ残 ≥σS 时(σ动 --激振器施加给工件的周期性动应力,σ残 --残余应力,σS --材料屈服强度极限),工件会产生少量的塑性变形,使残余应力峰值下降,原来不稳定的残余应力得到松弛和匀化。同时由于包辛格效应,经一定时间的循环后,工件材料的当量屈服强度由原来的σS 上升,直到与所受的应力相等,工件内部不再产生新的塑性变形,此时塑性变形变成弹性变形,工件的弹性性能得到强化,从而使工件的几何尺寸趋于稳定。

微观上,因金属具有将机械能转变成热能的性质,即使在σ动 +σ残 ≤σS 时,也会产生微观的塑性变形。其机理为:由振动输入的活化能使位错移动,在位错塞积群的前沿引起应力集中而产生塑性变形;同时,迁移的位错切割位错群,以致使位错钉孔,材料基体得到强化,使松弛刚度增大,工件获得尺寸稳定性。

VSR工艺的应用无论是对国家还是使用单位均可带来较大的经济效益,主要包含三个方面:

⑴VSR投资少,见效快

VSR国产设备单台投资一般在人民币10万元以下,维护费用一年约3-4千元左右。而一个20平方米的炉窑投资在人民币35-40万元左右,每年的维护费用在4-5万元左右,其建设周期一般为2-3个月。

⑵VSR运行费用低

TSR工艺处理的工件耗能折合标准煤约140-240kg/吨,需人工约2-3工时/吨,其中不包含后期去氧化皮的人工工时,由于工作环境差其工时费用高。VSR工艺的耗能仅为TSR的1-2%,需人工0.1-0.2工时/吨。

⑶VSR有利于环境保护

TSR处理使用的能源主要是重油、二氧化碳、天然气和原煤,以使用的最广泛的重油为例,每吨重油燃烧后产生约73.5kg的二氧化硫,同时还产生二氧化碳 等其它有害气体,而污染最小的天然气通过燃烧也将产生四倍的废气,目前我国用于TSR的重油上万吨,天然气上百万立方,由于分布面广,未能引起重视,但的确是一个不容忽视的污染源,其造成的间接损失不可估量。 (end)